# MJC-8 (T) Co-ordination Chemistry Topic- Magnetic Properties of transition metal complexes

### **Basic concept of Magnetochemistry**

Magnetochemistry studies how substances interact with magnetic fields. For transition metal complexes, this interaction arises primarily from **unpaired electrons** in the metal's d-orbitals.

This leads to two fundamental types of magnetic behaviour:

**Paramagnetism:** Caused by unpaired electrons. Substances are attracted to a magnetic field. This is a much stronger effect than diamagnetism.

**Diamagnetism:** Caused by all electrons being paired. Substances are weakly repelled by a magnetic field. This is a universal property of all materials but is only observable when paramagnetism is absent.

The classic way to visualize this is with a **Gouy balance**, where the sample is suspended between the poles of a magnet. The force on the sample indicates its magnetic property.

- Diamagnetic samples are pushed out of the magnetic field.
- Paramagnetic samples are pulled into the magnetic field.

## 1. Examples of Diamagnetism

Diamagnetic substances have no unpaired electrons in their electronic structure.

### **Example 1: Water (H<sub>2</sub>O)**

- **Why?** All electrons in the H<sub>2</sub>O molecule are paired. The oxygen atom has no unpaired electrons, and the bonds (O-H) are covalent with paired electrons.
- **Demonstration:** A small stream of water from a burette will be very slightly repelled (deflected away) by a very strong magnet. This is a famously delicate experiment due to the weakness of diamagnetism.

## **Example 2: Sodium Chloride (NaCl) - Table Salt**

- Why? NaCl is an ionic solid. Na<sup>+</sup> has the electron configuration of Neon [Ne] (all electrons paired). Cl<sup>-</sup> has the electron configuration of Argon [Ar] (all electrons paired).
- **Observation:** NaCl crystals show no attraction to a magnet.

# MJC-8 (T) Co-ordination Chemistry Topic- Magnetic Properties of transition metal complexes

## Example 3: Benzene (C<sub>6</sub>H<sub>6</sub>)

- **Why?** All electrons in the carbon-carbon and carbon-hydrogen bonds are paired. The delocalized pi-system in the aromatic ring also consists of paired electrons.
- **Famous Example:** Graphite (a stack of graphene sheets, which are like benzene rings) is actually **strongly diamagnetic**. A small piece of graphite can be levitated over a stack of strong neodymium magnets.

## Example 4: Coordination Complex: [Fe(CN)<sub>6</sub>]<sup>4-</sup>

- **Metal Ion:** Fe<sup>2+</sup> (a d<sup>6</sup> ion).
- Ligand: CN<sup>-</sup> (cyanide), a very strong-field ligand.
- **Explanation:** The strong field from the CN<sup>-</sup> ligands causes a large splitting of the iron's d-orbitals. This makes it energetically favorable for all 6 d-electrons to pair up in the lower-energy orbitals (**low-spin complex**).
- Result: No unpaired electrons → Diamagnetic.

# 2. Examples of Paramagnetism

Paramagnetic substances have at least one unpaired electron.

## Example 1: Molecular Oxygen (O<sub>2</sub>)

- Why? This is the most common and surprising example. Despite being a stable molecule, O<sub>2</sub> has **two unpaired electrons** in its molecular orbital configuration. This is fundamental to its chemistry.
- **Demonstration:** Liquid oxygen suspended between the poles of a magnet is strongly attracted to it, creating a beautiful "bridge" of liquid  $O_2$ .

### **Example 2: Sodium Atom (Na)**

- Why? The electron configuration of a sodium atom is [Ne] 3s<sup>1</sup>. The single electron in the 3s orbital is unpaired.
- **Observation:** While it's hard to demonstrate with solid sodium metal (due to metallic bonding), atomic sodium vapor is paramagnetic.

# Example 3: Manganese(II) Sulfate (MnSO<sub>4</sub>)

• **Metal Ion:** Mn<sup>2+</sup> (a d<sup>5</sup> ion).

# MJC-8 (T) Co-ordination Chemistry Topic- Magnetic Properties of transition metal complexes

- **Explanation:** The Mn<sup>2+</sup> ion has five electrons in its d-orbitals. With weak-field ligands like water or sulfate around it, it is most stable with the electrons unpaired in all five orbitals (**high-spin complex**), following Hund's rule.
- Result: 5 unpaired electrons → Strongly Paramagnetic.

# Example 4: Coordination Complex: [Fe(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>

- **Metal Ion:** Fe<sup>2+</sup> (a d<sup>6</sup> ion).
- Ligand: H<sub>2</sub>O (water), a weak-field ligand.
- **Explanation:** The weak field from the H<sub>2</sub>O ligands causes a small splitting of the d-orbitals. It is energetically favorable for the electrons to remain unpaired, leading to a **high-spin configuration** with 4 unpaired electrons.
- Result: 4 unpaired electrons → Paramagnetic. (This contrasts directly with the diamagnetic [Fe(CN)<sub>6</sub>]<sup>4-</sup> complex).

## Example 5: Gadolinium(III) Ion (Gd<sup>3+</sup>)

- **Why?** Gd<sup>3+</sup> is an f<sup>7</sup> ion. The f-orbitals are very inner and are not significantly split by the ligand field. The seven electrons therefore remain unpaired to maximize stability.
- Result: 7 unpaired electrons → Extremely Paramagnetic. This is why Gadolinium-based compounds are used as contrast agents in MRI scans.